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PREFACE

This work is primarily concerned with the interaction between
the flow of an ionized gas and a magnetic field. The particular
problem treated corresponds very closely to conditions existing in

exploding wire experiments, and should prove useful in interpreting

the results of such exreriments.
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SUMMARY

A similarity solution 1s obtained for the flow behind a very
strong (in the hydrodynamic sense) cylindrical magnetohydrodynamic shock
wave produced by the sudden release of energy along a line of infinite
extent in a plasma.- The plasma is assumed to be an ideal gas with in-
finite electrical conductivity, and to be permeated Dy the azimuthal
magnetic field of a line current. It is shown that it is of critical
importance to take into account the ambient magnetic pressure, no matter
how small. It is found that, to preserve similarity, the external circuit
is required to maintain a constant axial current; this result also appears
in the related problem, treated by Greenspan, where the ambient plasma
is nonconducting. It is shown that this boundary condition on the circuit
implies an exchange of energy at £t = 0 between the external circuit and
the plasma. When this energy is taken into account, the dependence of the
shock speed on the explosive energy can be obtained. This dependence is
determinedas a function of the ambient magnetic field both for the present
case and for Greenspan's case, and intercsting differences are noted. The
fraction of explosive energy which appears as mechanical energy is also
calculateQ for the two cases, and again significant differences are found
%0 exiat. Other differences, with possible experimental consequences, are
also discussed. The distributions of flow quantities in the neighborhood
of the axis in the present cace {8 found to be difrerent from both the
ordinary blast wave and Creenspan's case; the mos: pronounced differences
are {n the density distridbution for large magnetic field and 1n\the pressure

distribution for any mngnetic fleld vhatever,
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I. INTRODUCTION

It is well known that a similarity solution exists for the flow
behind a very strong cylindricel shock wave produced by the sudden re-
lease of a finite amount of energy per unit length, along a straight
line of infinite extent in a uniform gas.(l) A corresponding magneto-
hydrodynamic problem also has the same similarity.(a')’u) Here the
shocked gas is an electrically conducting plasma vhich interacts with an
applied magnetic field. The gas is assumed to be initially in a purely
azimuthal magnetic-field produced by a constant line current, the return
for which is a concentric cylindrical conductor of very large radius. The
flow is again produced by the sudden release of energy along the axis (by
exploding the wire carrying the current, for example).

The flows considered here are those for which the conductivity of
the shocked plasma 18 infinite. For this class of flows, as Greenspan(h)
has pointed out, two limiting cases arise. 1In the first casé, the quiescent
gas has zero conductivity but the gas behind the shock has infinite con-
ductivity. The magnetic field across the shock is continuous and the
boundary conditions at the shock are the ordinary hydrodynamic Jump condi-
tions for a strong shock. This situation arises if the magnetic shock
transition zone is much wider than the viscous transition zone, wvhich 1is
replaced by a shock jump. The entire effect of the magnetic field, in
this case, is contained i{n its interaction with the flowv behind the shock.
This limiting case, hereinafter referred to as "modified hydrodynamic,”
has been discussed by Greenspan. In the second limiting case, the magnetic
field {s discontinuous «cross the shock, and the boundary conditions at

the shock are those appropriate to a magnetohydrodynamic shock. This
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situation results if both the magnetic ana viscous transition zones are
very thin and if the quiescent gas is also a perfect conductor (as a result
of pre-ionization, for example). In this case, hereinafter referred to as
"pure MHD," the magnetic field affects conditions at the shock itself as
well as those behind it.

In this peper, the pure MHD flow is considered in detail. This case

(3)

va#'firat discussed by Pai, but the results obtained velow are found to
disagree significantly with his. The discrepancy is shown to arise from
an approximation made by Pai to the pressure jump conditicn at the shock.
The particular approximation was to neglect the magnetic pressure in front
of the shock. While it is true that, for small values of this magnetic
pressure, the errors introduced at the shock are small, nevertheless the
inclusion of such n pressure, no matter how smill, produces n profound
effect at the axis and, concomitantly, in the energy content of the gas.
The question of the energy content of the gas is also concidered below,
for the modified hydrodynamic us well as for the pure MHD case. It is
shown that in both cases, in contrast to the ordinary blast wave solution,
the 1ncrement'in the total (gns dyna~{c plus mignetic) energy of the gas
i8 not equal to the energy supplied by tne explosion. The two cases aiffer
markedly, however, in that in the pure MHD case the increment is infinite,
vhereas in the modified hydrodynamic case {1 {s finite but leas than the
energy supplied by the explosion. The dif'ference between the increment
ana the explosion energy represents n concentiuntion of magnetic energy,
in one case supplied by, ana in the o-her cnse removed by the externnl
circuit in anintaining the constant current required by the similnrity

solut{on.—TU 13 poasible {n both cases to calculate the contribution from
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the external circuit, and thereby to relate the shock speed and the
mechanical energy in the gas to the energy supplied by the explosion.
The analysis reveals an interesting difference between the two cases.

In both cases only part of the energy supplied by the explosion appears

as mechaniéai energy, the remainder being converted to magnetic eﬁergy.
In the pure MHD case, this converted part of the explosion energy appears
in the compressed magnetic field behind the shock, while in the modified
hydrodynamic case, it is delivered insteaa to the external circuit.

It seems reasonable to believe that, despite the divergence mentioned
above, the results obtained have physical significance. The divergence
appears because of the unphysical assumption of a dimensionless axial con-
ductor. Ong‘xgg}gvgxpect that in any actual experiment, where the axial
condﬁctor has a finite radius, the true flow woula approuch that given
by the similarity solution nt distances from the axis much greater than
the radius of the conductor. One woula also expect that any relations ob-
tained between finite quantities, such as the dependence of the shock speed
on the explosion energy or the ratioc of mechanicel energy to explosion energy,
Woula also be approximately velid. Thesw are questions which, of course,

must ultimately be decided experimentally.
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JI. FORMULATION OF THE PROBLEM

A solution of the magnetohydrodynamic equations is desired for the
flow behind a cylindrical shock wave produced by the sudden release of a
finite amount of energy Bo per unit length, along an axis of infinite

extent in a plasma. The plasma is assumed to be an ideal gas with infinite

electrical conductivity; viscosity and heat conduction are neglected. in

azimuthal magnetic field is assumed to exist initially in the plasma. As
a consequence of the assumption of infinite conductivity, the magnetic

, field 'in the plasma remains azimuthal. Under the assumptions made, all

T, AR TR

quantities are functions only of the radius r and time t, and the motion

of the gas is governed by the following equations:

§ r _D_: + s-a; (rou) = 0 (continuity) (le)
! g2 52

u, 2,212,212 (% B _

IR T =38 |25 * T o] (momentum) (1»)
| BB° )
i ST * 5 (uBo) =0 (induction) | (1lc)
3, L A\ (D).

<bt +u axD (p)) o] (entropy). (14)

velocity, and B° the azimuthal magnetic field. The specific heat ratio y
is assumed constant and the magnetic permeability u is taken to be that
of free space (MKS units are used throughout). The gas is assumed to be
initially in a unifora state Pyr Pge The initial azimuthal magnetic field
is assumed to be that produced by a constant current Io' flowing along the

axis.

e~ —



Entering into the initial and boundary conditions of the problem are
certain dimensional constants; these are the initial pressure po, the
initial density Py the initial axial current Io, and the energy EO 1ib-
erated per unit length. Since the dimensions of the quantity ulz are the
same ags those of Eo, only three of the four constants are dimensionally
independent. If, in addition, the liberated energy Eo is large enough to
produce a very strong shock, the initial pressure P, DAY be neglected, and
only tvo constants with independent dimensions enter into the problem--po
and Eo. As in the ordinary blast wave case, the only combination of length

and time that can be formed from these constants is of the form

(1ength)® [ E,
time po

It now follows from general considerations that the system of equations,

(1), possesses a similarity solution; this solution is of the form

P =0, £(n) (2a)

us= {:2¢(q) (2v)

p = 0 (5)° P (n) (2¢)
1

By * (uoo)§ f B() (24)

vhere £ , %, (® and 8 are non-dimensional functions of a non-dimensioml
variable. The only non-dimensional variable vhich can be formed from the
variadles r and t and the dimensional constants of the problem is the

variable
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2

- n o= (3)
¢t

where c‘ is some characteristic parameter with the dimensions of (1ength)2/

»
time.

It is convenient to introduce as independent variables, instead of r
and t, the stream function { defined by

e, Bt ®
o (o)

and the variable £ defined as

p.-i-g. (5)

Physically, the value of f corresponding to any (r,t) is the ratio of the
mass between the axis and the radius r at timet tothe mass initially in
the same volume. The value of P at the shock, therefore, is ﬂ. -1, A
line of constant f is also a line of constant n in the (r,t) plane.

In terms of the variables (¢,0), ©qs. (2) take the form

p = o, () (6a)
uwe ;%;% | (6b)
e ogc'? !’-%9)- | (6c)
By = (wo )2 La(8) (6)

1

.Tbe quantity 9 defined by Eq. (3) is proportional to the square of
that defined by Creenspan. :



wvhere the quantities o, U, P, and B are non-dimensional functions of the
»
single (non-dimensional) variable §. The parameter ¢ 4n Eq. (6) is

related to the speed of the shock; in general,

L 2

cs= A ;%75 (7)

where ¢ is the shock speed and A 18 an arbitrary constant. In ihe present
case, it is convenient to choose A = 1.

It is necessary for the initial conditions to be compatidble with the
" assumed form,“(ﬁ)}ldi—the solution. The plasma is assumed to be initially
at rest, to have a uniform dersity po’ a uniform pressure po, and to be
permeated by the azimuthal magnetic field of a constant line current Io.
The first two conditions are obviously expressible in the desired form;
viz.,
U =0 (8a)
and

P ao ) l (ab)

respectively, while the last condition ca:i be written in the form

1/2
ul °

o]
B - | ——s . (8¢)
[o) 8*2000 2

Por the condition of uniform pressure to be compatible with (6), howvever,

it {s necessary to assume that the initial pressure is negligible; i.e.

po s Q. (Bd)

This {s the usual dlast wvave assumption of a very strong shock.




The Jacobian of the transformation defined by Eqs. (4) and (5) is

3

J=3trsy = -2 oup . (9)

Since the_Jacobian is not zero (except at certain points), the transforma-
tion defines a one-to-one mapping between (r,t) and (y,0). One may, in
fact, obtain an integral expression for the stream function ¢. The

differential equation

dt 123 -
N7 Sg - 21/2 021/20 (10)

is easlly integrated to yield

1 2
Y- E‘;’]'/2 9%;— ’ (103)

Finally, 1t is possible to express the variable n as a function

(implicit) of P; by combining Eqs. (3), (5) and (10), one obtains

g =22 (11)

¢175 0-B)

If one now substitutes Eq. (6) into Eqs. (1) and transforms the
partial derivatives to derivatives with respect to fi, the equations of
motion become

3/ g oy du
28”' v '3 ('I7R) + -3- + 2(po) o . 0 (continuity) (12a)

%)

: 2
p"‘u%‘%(u)a(v‘%f)%?*%ﬂ o (w12



cgu %g . 9%9 + 2(p-0) B %% =0 (incéuction) (12¢)
a ,P

(=) =0 (entropy) . (124)
ap oy

A solution of Egqs. (12) is cesirea wnich sati{sfies the boundary condi-
tions sppropriate to & very strong magnetohydrodynamic shock. In terms of

physical variables, these conditions may be written:

pO u
= - 1 - 1? (continuity) (13a)
. ,
1 2 2.
pg *+ 55 (B - B)) = o uc (momentum) (15b)
B us B
EQ =l-= - (induction) (13c)
]
2
B
e _xi )P el Z 2 .
(e 5 cus)(c us) = o, (¢ - 5 cu_+ 5 us) (wave speed) (13d)

"o

where the subscript "s" denctes quantities immediately behind the shock

and Bc is the value of B, immediately smhead of the shock. The quantity

2]
c is egain the shock speed, given by (7" with A = 1. The wave speed equa-
tion, (13d), is derived by combining the usual energy equation with the
continuity, momentum and induction equations.
Japtssisbighs

"It should be noted that the magnetic pressure nhead of the shock has
teen retained in the momentum equation, (1:b). Although 1t is necessary
to neglect the ambient gns pressure in this equatisn %o preserve similarity,
the same {8 not true of the ambient magnetic pressure which does have ‘the

proper form. This term, which was neglected by Pail, can therefore be

retnined ang, rs will be shown below, should Le retninea,




In terms of the non-dimensional varisbles defined by Eq. (6), the

shock relations become:

1
."1-Y (14a)
8
P+ 5B (0F - 1) = U, (14b)
21y (1e)
B, .
+1 2
(L-ZFu)1-vu)=p(1-Zu). (14a)

The quantity B, 1s given by Eq. (8¢c), and is, physically, the ratio
of the Alfveén speed in the gos immediately ahead of the shock to the
shock speed (Alfven number).

Ir po is considered a parameter, Eqs. (1l4) define a one-parameter
family of shock curves. For a given value of po, U8 is first determined
es a root of the quadratic equaticn, (1lkd). One then obtains O, and Py
directly from Eqs. (1lba) and (1luc), respectively, and then P, from Eq.
(1bb).

Three algebraic integrals of the four equations of motion many be
obtained. The entropy equation, (12d), has the immediate integral

£ < 4 - (constant) (13)
07

from vhich 1t follovs that the entropy is constant along a streamline. A

second integral may be obtained by combining Eqs. (12a) and (12¢); namely

32 J% e b = (constant) (16)
o

7hich expresses the fact that the fl{eld is "frozen” into the fluid--a
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well-known consequence of the assumption of infinite conductivity. A

final algebraic integral, obtained by combining Eqs. (12a) and (12b), is

%(%*%Pa"‘%wz‘) +$2(P+-2]=52) = k = (constant). (17)

This so-called "energy integral” results from the fact that, with the
agsumed similarity, the total energy is constant not only for the entire
flow field, but also between any two similarity lines.
To establish the connection between the variables used here and
' those of Creenspan, one additional relation mey be derived; from Egs. (11)
end (lka), the value of n at the shock is Mg = 25/2. It then follows
from Eq. (3) that the location of the shock is at rs(t) = 23/h(c*t)l/2.
The three integrals (15), (16) and (17) may now be used to' eliminate
the functions P, # and U from Eqs. (12). The system, (12), is thereby

reduced to the single first order equation

ae g N - ST [m)gr] - (ave) [x + v(s-2)]

4 . (18)
& o(l-§) a07-1(2§- ;%i) + 0g(3C - 4) + k
where
gs % ) (19)

If neither a nor b is zero, no further analytic integration appears
possible. In the general cnae, then, the problem is reduced to the

numerical integration of a single ordinary equation.
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III. GENERAL REMARKS

i T
e

A féQ'geﬁéral remarks can be mede in connection with Eq. (18).
Both cases mentioned in the Introduction, i.e., pure MHD, and modified
hydrodynamic, as well as the ordinary blast wave, appear as special cases
of Eq. (18). The solution, in each case, is that integral curve of Eq.
(18) which starts at the point appropriate to the particular shock and
terminates at the point which corresponds to the axis. (Each point on
the integral curve maps into a line of constant n in the (r,t)-plane.)
In every CE:ELWEEQfPOint corresponding to the shock 18 a regular point of
the differential equation. &ince only a single integral curve may pass
through a regular point, the solutions obtained in this manner are unique.

A point of central importance in the analysis is the dependence of
the solution on conditions at the shock. The boundary conditions at the
shock enter into Eq. (18) through the constants a, b, and k, which are
determined by evaluating the integrals (15), (16), and (17) at the shock.
Because of the non-linearity of Eq. (18), these constants affect the entire
flow behind the shock in a very complicated way. The most striking effect,
hovever, is on conditions at the axis. An axis of symmetry always corree
sponds to a singular point of such a differential equation, i.e., to a
point at wvhich both the numerator and denominator vaniak. The behavior of
physical quantities at the axis is very sensitive to the location of thia
singular point, wvhich, in turn, ia determined by the relationships among
the constants a, b, and k prescribed by conditions at the shock. As will be
seen below, this sensitivity to the location of the singular point manifests
{tself in a profound difference at the axis, especially in the pressure

aistridbution, detween the pure MHD and modified hydrodynamic cases.
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IV. OKDINAXY ELAST WAVE SOLUTION

For purposes of illustration and ccmparison, the ordinary blast
wave solution in the present varicbles 1s briefly sketched below. The
blast wave solutlon 1s recovered in the limit of zero magnetic fileld.
The appropriate shock conditions are Zgs. (lh) with B = 0. These,

applied to Egs. (15) through (17), yleld a = —= (£1)?, b = k = 0; the

7+l 7+l
integrals (15) &nd (17) theretore become
. vé -
P 7*1 (7*1) o (20)
and
Lo (= -
2 cU (7_1 = g) P=20 ) (21)

respectively, with § definea by Eq. (19).

The singular point of Eq. (18) corresponuing to the axis in this case
is the‘saddle point o = 0, € = ;%T . The tehavior of physical' quantities
in th; neightorhood of the axis can be ueduced from =n anslysis of Eq. (18)
in the neighborhooc of tue singulnr point. {uwever, in this case Ey. (18)

¢rn be integratea annlyticnlly; the sol.wion sntisf,ing the boundary condi-

tions at the shock is
2 Z‘l 1 e
1. -1 . Y c=y
o = (5= ) ( ) (7-7) 8+ ¥ . (27)
Equntions (20)=(7) give the complete solution, i{n prramesric form,
of the equations ¢f motion. r[he par.meter § cecrenses monotonicnlly from

the vilue %1% nt the shock Lo the vnlue ;ZT At the nxir.
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It can be seen from these equations that P and U both become zero

(27-1)
at the axis, vith P~o’ and U~¢ > . Since f = o § ~0 at the axis,

it follows from Eq. (10a) that ¥ ~ c’t, and consequently from Eqs. (6)
for the physical variables, that o = O, u -~ O, and pt ~ constant at the

axis. These are well-known properties of the blest weve solution.




V. PURE MHD CASE

In the pure MHD case, the boundary conditions at the shock are
given by Eqs. (1b4) with 0 < B, < 1. (The dersity ratio across the shock
cdecreases with increasing Bo’ becoming unity when po = 1.) These shock

conditions, applied to Egs. (16) and (17), yield

1l .2 ,
b-knaﬂoo (25)

When these velues of b and k are substituted into Eq. (18), 1t is found
thet a higher order singular point ¢ = O, ;_- 1 corresponds to the oxis.
The parvmeter § decreases mcnotonicully from its value at the shock to
s value ut the axis.
An interesting conclusion can already be arawn from the location of
the singular point. It is easy to show, from the various defining relation-
ships and the integral (16) with b = % pi , that the magnetic field behind

the shock is given by

qu i
Bo(rst) === # (r,t) . (24)

The factor rultiplying the parameter € in Eg. (24) is clearly the initinsld
magnetic field. -Thus, as mizht be expected, the magnetic field is every-
vhere compressed between the shock and the axis. At the axis, hovever, A
the magnetic field maintains 1ts initial value, This implies that, to
preserve similarity, the external circuit must muintain n constani current
Io' (The same resul’ was obtained by Greenspan in the modified hydrodynamic
case,) Cne might expect & priori that u flov with the same similnrity

wvould te produced {f the current in the vire vere instentaneously increased



, since such a dboundary condition introduces

+o & new constant value Il

no new cimensional constents and 1s expressible in a form compatible with

the similerity. This, however, is epparently not the case; only the

\

maintenance of a constant current preserves similarity.

Because of the high order singularity of Eq. (18) at 0 = O, £ = 1, the de-
pendence of the other varisbles on § in the neighborhood of the axis is
most easily’abiziiined from the contimuity equeation, (12an). An nnalysis

of this equetions shows thet, in the neighborhood of 0 = O, g =],
~ 2 1
u Ty, e [+ i) (25)

where U_ 1is & constant. It then follows from equations (17), (10a), and

(11) that

=
e Tay (- )7t (2€a)

N ~

5 : 1
v Ty (8- 07 e [ 5oy T (26v)
i --;%-l- 2 1 26
n=n(8-1) exp {- o TE:T7] (26c)
1
RNETIY ,

where °1 - [(7-1);] , and 'o r.nd qo are constants. The last of these

equations verifies that this singular point indeed corresponds to the

nxis (" = 0)0
The behavior of the physical variables in the neighborhood of the

axis can nov be deduced from the defining equations, (6), and the inte-

zrals (15) and (1€). The resulte are:



o T ogy |-l (27)
1
. 1/2 s -1

~ 2

o3 " iy 2 - 2n ] e
e -2

~ "0 8b -1
p-—t-'-—r-r-—l’ﬂ [- 1n "I] (27¢)
2 p c‘
gu:'.%_ v q7t (274)

As in the ordinary blast wave solution, the density and velocity.
-approach zero at the axis. The dependence on n, however, 1s quite diff-
erent in the two cases, the logarithmic dependence being peculiar to the
pure MHD case. The density, in particular, approaches zero much more
slovly in the pure MHD case, especially for the larger values of ﬁo (Fig.
‘1) The pressure is markedly different, becoming infinite at the axis
rather than asymptotically constant as in the blast wave solution (Fig. 3).
This infinity will be discusseca further in connection with the energy
content of the gas.

The results of the numerical integration of Eq. (18) for various
values of pi,vith y = 1.4, nre shown in Figs. le4, It {8 clear that the
presence of a magnetic field ahead of the shock has an important effect on
conditions at the nhock (nnd everywhere btehing it) as well as those at the
nxis. The compression across the shock decreases from its strenge-shock value
of %%% for zero magnetic field (no = 0) %o a value of unity for ao e« 1, The
velocity and gus pressure at the shock vary accordingly, decreasing from

thetir strongeshock values %o zero over the range of no. {The similarisy
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solution is valid, of course, only so long as the shock remains a strong
shock in the hydrodynamic sense, that is, so long as the gas pressure ahead
of the shock is negligible compared to that behind it.) The magnetic
pressure at the shock, on the other hand, exhibits a maximum at a value of
ag between 0.3 and O.4. The appearance of such a maximum was noted in the
inverse pinch effectgs) The existence of this maximum depends only on the
Jump conditions at the shock, which are the same as in the inverse pinch.
The importance of including the ambient magnetic pressure in the
shock relations is illustrated by comparison of the above results with
those of Pai; where this term was neglected. In the first place, if the
ambient magnetic pressure is neglected in Eq. (14b), the Alfvén number,
50' is alloved to become arbitrarily large. This is in contrediction to
the limits O < po < 1 obtained above for a pure MHAD shock. In the second
place, all hydrodynamic quantities at the shock become independent of po,
always attaining their strong-shock values. It can be seen from Figs. 1-3
that this is a reasonable approximation only for very small values of po.
The same error is introduced into the magnetic field ratio across the
shock vhich;';zgﬁré;i'l conditions, is always %E% but which, with Eqs. (14),
decreases from this value to unity at ao = 1. Finally, and vhat is
responsidle for an important discrepancy even for the smallest values of
Bo’ Pai's conditions lead to different values for the constantes a, b,
;nd k of Eqs. (19)-(17), and thereby alter the location of the singular
point of Eq. (18) vhich corresponds to the axis. With Pai's conditions,
the singular point 1s located at 0 = 0, £ = f;% rather thar at ¢ = 0O,
¢ = 1 (vhich 1s no longer even a singular point of the differential

equation). Along the integral curve passing through the shock, the
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variable £ decreases from its value of %E% at the shock to some minimum
value, and then increases back to this value at the axis. Since the mag-
netic field behind the shock is given by Eq. (24), the location of the
singular point implies that the current in the wire has Jumped to ;E%
times -its 1n1€f§i%7iiue, a solution in contradiction to the requirement

of a constant current when the embient megnetic pressure is retained. The
difference in location of the singular point also leads to discrepancies
in the behavior of the other physical variables near the axis. In Pai's
solution, the density and velocity go to zero at the axis, but with a
dependence on n which is quite different from that given by Egs. (27a) and
(270). The most drematic difference, however, is in the pressure which,
rather than becoming infinite, as given by Eq. (27c), goes to zero at the

axist The solution in the neighborhood of the axis thus shows a sensi-

tivity to the shock conditions which is more than a little surprising.
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VI. MODIFIED HYDRODYNAMIC CASE

The modified hydrodynamic case has been considered in detail by
Greenspan, who obtained the solution by the numerical integration of
three coupled differential equations combined with one integral of the
motion.f The solution can also be obtained within the framework of the
present formalism. Some properties of the solution of interest for com-
parison with the pure MHD case and for the energy considerations to follow,
are briefly noted at this point. In this case, the magnetic field is
assumed to be continuous across the shock; the boundary conditions at the
shock are therefore simply the ordinary hydrodynamic strong-shock condi-
tions, and the effect of the magnetic field appears only in the flow behind

the shock. The range of the Alfvén number, Bo’ is now indeed unbounded,

e T

{n contrast with the pure MHD case.
When the strong shock conditions, together with the continuity of the

magnetic field, are applied to Eqs. (16) and (17), one obtains
La2 . (22Ly?
D= > BO (7“1) (28&)
LL}_X.Z‘:_I b (28b)

(ef., Eq. (23) for the pure MID case). The singular point of Eq. (18)
/”'

vhich corresponde to the axis is the point 0 = 0, § = ;E% + Along the

integral curve through the shock, the parameter £ decreapes from its value

at the shock, Q. - f%% y to some minimum value, and then i{increases back to

Thln wvas only a specinl case of the more genernl problem of finfte
conductivity, treated by Greenspan, where the entropy und frozen field
integrals do not exist.
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this value at the axis. In the modified hydrodynamic case, the magnetic
field behind the shock is given by

I

(1) = e Sptd (29)

(ef., Eq. (24)). Thus, the field is everywhere smaller tetween the shock
and the axis than it was initially; the field is expanded by the shock

rather than compressed by it as in the pure MHD case. At the axis, the

< et L e

field again maintains its initial value, so that,'as in the pure MHD case,
a requirement for similarity is that the externasl circuit msintain a con-
stant current.*.

This difference in the variation of the magnetic field implies a
marked difference between the two cases in the current distributions in
the shocked gas. 1In both caseg, the field ahead of the shock is assumed
to remain unaltered; the integrated current through the gas must therefore
be zeroc in both cases. In the pure MHD case, where the field jumps across
the shock, there is a cylindrical current sheet along the shock front,
floving in the same direction as the ax{al current, and balanced by opposite
currents in the remainder of the gas. In the modified hydrodynamic case,
vhere the field is continuous across the shock, there is no current sheet.
Betwveen the shock and the point where the variable { reaches its minimum
value, there are currents in the gas flowing in the same direction as the
axial current; these are balanced by the opposite currents in the remainder

of the gas.

..Although the singular point of Eq. (18) for Pai's solution is the
same as that for Creenspan's solution, a current jump is implied in the
former case, but a constant current in the latter. The reason for this
e that Pai's Jump condition for the magnetic fleld leads to a value of
b given ty Eq. (25) rather than Eq. (28a), and hence to an expression for
By given by Eq.(24) rather than Eq. (29).
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Another important difference between the two cuses is in the behavior
of the other physical variables in the neighborhood of the axis. The
density and velocity again become zero at the axis, but not with the
logarithmic dependence on n of Eqs. (27a) and (27b). The pressure,
hovever, also goes to zero at the axis, in contrast to the pure MHD case
where it becomes infinite. The results for these two cases, as well as

for the ordinary blast wave, are summarized in Table 1.

T




Table 1

DEPENDENCE OF PHYSICAL VARTIABLES ON NON-DIMENSIONAL VARIABLE n
~ —IN"THE NEIGHBORHOOD OF THE AXIS (n = 0)

Case Pure Modified Ordinary
Variab MHD dro ¢ Blast Wave

_ 2
G| 7 2 1
p -lan ° 7"t a7t
R
m51/2 v‘1/2 [_ in n] ql/? T|1/2
S i T 2
4 '1-1 [' in ‘1] | : const.




)

VII. ENERGY CONTENT

The one remaining parameter of the problem is the explosive energy
per unit length, Eo’ released along the axis at t = O. This parameter
enters through the fact that, with the assumed similarity, the totel
energy between any two similarity lines, in particular between the shock
and the axis, is constant in time. 1In the ordinary blast wave solution,
the initial energy of the gas i{s assumed negligible and the gas is assumed
isolated from all external energy sources. The energy content (entirely
mechanical, in this case) of the gas in motion is therefore equal to the
energy released at ¢t = O. This equality allows one to obtain a relation
between the shock speed and the quantity Eo’

When a magnetic field is present, the situation is not quite so
simple. One minor point is that, although the mechanical energy of the
gas is initially negligible, the magnetic energy is not (being infinite,
in fact) and must therefore be taken into account. Secondly, while the
total mechanical energy of the gas in motion is still constant in_time
(as is also the magnetic energy), this energy can no longer be identified
with the energy»ggleased at ¢t = O. Betause of the coupling between gas
and magnegzg—field, some fraction (not known a Eriori) of the energy Eo
appears as mechanical energy and some fraction as magnetic energy.
Finally, the system is no longer isolated from external sources; it is
coupled to an external circuit, vhich, moreover, is required to mnintain
a constant current. It is conceivable that such a boundary condition on
the circuit implies an exchange of energy at ¢ = O between external source

and system. That this is in fact the case wi{ll be shown belowv.

 ————T_a”
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As noted above, the mechanical energy and the magnetic energy are
both constant between any two similarity lines. Another quantity, closely
related to the latter, is aleso constant between any two lines ;f constant
n, viz., the magnetic flux. Although the total magnetic flux between
shock and axis is constant in time subsequent to the explosion, it is not,
however, equal to the total magnetic flux in the same volume prior to the
explosion; there has been a change in flux (per unit length), A%, in

this volume given by

rg(t) .
M-J' B - o2 |ar
@ 2xr
o
8 1l
, 2% "o
J— i'Egpoc i; Io (ﬁl 5 - po) c-l . (30)

Since the flux between shock and axis is ccnstant in time, it follows that
an amount of flux, A%, is supplied (or withdrawn) at the axis at the time
t=0, vhen shock and axis coincide. Asspciated with this flux is a quan-
tity of energy (per unit length), AE, = Io A%, which is supplied to (or
vithdrawn from) the system at t = O by the source maintaining the constant
current Io' The increment in the total energy of the system thus contains
a part AEc in addition to the part Eo released along the axis at t = O.
The increment in the total energy of the syatem appears in tvo forms:

an increment, AE

G in the mechanical energy, given by
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/"‘—"/
l .
*2 P 1 dg
AEG = 2"°oc J [ 37-15 * 2 ¢ Uz] o- (3le)
o}

and an increment, AEB, in the magnetic energy, given by

1 2
*2 1B, _ 2] dé i
AEB = gxpoc £ e [75 Bo c- (31b)
The energy balance equation for the system then becomes

Eo = AEG + AE

B AEC' (32)

In Eq. (32), the quantity AE, - 0E, represents that part of Eo which

B
eppears as magnetic energy.

The energy equation can be written in the form
2rp ¢ ° ;
Ey = 2npC In(ﬁo.7) (33)

where In(Bo;y) is a constant which depends on the parameter po and the
specific heat ratio 7, and which can be evaluated only after the complete
{ntegration of the equations of motior. It is this equation vhich enables
one to obtain the dependence of the shock speed (which 1is relgted to c.)

on the explosive energy E_ nnd the Alfveén number ﬂo.r'

T ——————

f'ln his treatment of the modified hydrodynamic case, Greenspan
calculated In(pozy) only in the limit B~ =, where £, = A, .

/-'/ -
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VIII. RESULTS AND CONCLUSIONS

The results of the numerical calculation of the energy parameters
are shown in Figs. 5 and 6. The dependence of the quantity In(Bo;r)
on po is shown, for two different values of y, in Fig. 5. In the modi-
fied hydrodynamic case, In(ao;y) increases monotonically from the ordinary
blast wave value at BO = O to the asymptotic value found by Greenspan
at po = ©, This implies, from Eqs. (33) und (7), that, for a given explo-
sive energy, the shock speed decreases with increasing magnetic field. The
strength of the shock, however, remains constant in this case. In the
pure MHD case, In(sosy) increases from the blast wave value at ﬁo = 0
to & maximum at a Bo of about 0.2, and then decreases to zero at Bo = 1.
For a given energy release in this case, then, the shock becomes weaker
with increasing magnetic field, but the shock speed first decreases to a
minimum value and then increases as the magnetic field is increased.

Fig. 6 shows the dependence on ﬂo of the fraction of Eo which appears
as mechanical‘;:::g;:' In the pure MHD case, this fraction decreases
monotonically from unity at ao = 0 to 1/° at po = 1; In the weak shock
limit, then, there is equipartition of the explonive energy between mechan-
ical and magnetic energy. This is in contrast to the modified hydrodynamic
cage vhere this fraction is essentially unity, independent of ﬂo' hctually,
this quantity decreases by about one half of one per cent at a value of
po of about 0.5, dbut the decrease i{s tuo small to be shown {n the figure.
The exnlosive energy, therefore, appears almost entirely as mechanical
energy in the pmodified hydrodynamic case.

There are some other interesting differences in enerygy content {n the

pure VD and modified hydrodynamic cases vhich may te inferreu from Eqs.(30)
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and (31), taken together with Eqs. (24) end (29) and the discussion per-
taining thereto. In the pure MﬁD case, where the field is everywhere
compressed behind the shock, the gquantities OE, and AE = I A% are both
positive. Both quantities are, in fact, posiéively infinite; the appear-
ance of_this divergence and its effect on the validity of the results has
been discussed in the Introduction. The difference, AEB - AEC, is, however,
finite and positive; it represents the portion of Eo which is converted to
magrietic energy at t = 0. SCince AEB > AEc, this part of Eo appears in

the compressed magnetic field between shock and axis.

In the modified hydrodynamic case, where the field is everywhere ex-
panded behind the shock, both AEB and AE, are negative (although finite,
in this éale). The difference, AE, - AE , is, however, agein positive,
ard again represents the portion of Eo wvhich 18 converted to magnetic
energy at ¢t = O. However, since AEB < Ec, this part of Eo does not appear
nov in the magnetic field behind the shock but is delivered instead to
the external circuit.

The difference Just discussed implies a corresponding difference in
the voltage induced in the external . ircuit by the gas in motion. In
the pure MHD case, ABc is positive; i.e., the external source supplies a
pulse of energy at t = O, Thus, a positive voltage pulse (i.e., in the
same sense as Io) should be induced in the circuit at ¢t = 0. Subsequently,
as the shock progresses outvard through the gas, amb! .nt magnetic energy
enters the region behind the shock. Since the total magnetic energy (and
magnetic flux) betwveen the shock and the axis remains constartin time,
magnetic energy must leave at the axis at the same rate it is entering at
the shock. Thus, the short positive voltage pulse should be followed dy

A long negative voltage pulase.
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In the modified hydrodynamic case, the situation is Just reversed.
The quantity ABc is now negative, which means that a pulse of energy 1is
delivered to the circuit at t = O. This implies an initial negetive
voltage pulse. As the shock progresses outwards, it "pushes out" some
6f the magnetic field from the gas through which it passes (the field is
expanded as a result of the passage of the shock). There is thus an out-
flow of magnetic energy through the shock which must be balanced by an
influx of energy at an equal rate at the axis. The short negative voltage
pulse should therefore be followed by a long positive voltage pulse.

The long voltage pulses discussed above should be observable experi-
mentally. However, whether or not the short voltege pulses would also be
seen is an open question. As mentioned in the Introduction, one would
expect that, in any ectual experiment, where the axial conductor has a
finite radius, the true flow would approach that given by the similarity
solution at distances from the axis much greater than the radius of the
conductor. The short voltage pulse at ¢ = O, however, is a property
of the solution vhich is associated with the axis itself, and one may
reasonably wonder whether this feature of ‘e solution would be retained
in an actual experiment.

Finsily, the energy and flux considerations outlined above help to
account, at least heuristically, for the difference in the pressure distri-
bution at the axis in the twvo cases. One can think of an imaginary inter-
face at the axis across vhich there must be a pressure balance if the flow
{8 not to separate from the axis. In the pure MHD case, an infinite
magnetic pressure is produced on one side of this interface by the addition

of magnetic flux at ¢t = O; this i{s dalanced by an infinite gas pressure
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at the axis. In the modified hydrodynamic case, a "partial magnetic
vacuum” is created at the axis by the removal of flux at t = O; pressure

balance in this case requires that the gas pressure be zero at the axis.
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